

Addition von Silylenen an Iminoborane^[1]

Peter Paetzold^{*a}, Detlef Hahnfeld^a, Ulli Englert^a, Wieslaw Wojnowski^{*b}, Boguslaw Dreczewski^b, Zbigniew Pawelec^b und Leonhard Walz^c

Institut für Anorganische Chemie der Technischen Hochschule Aachen^a, Templergraben 55, W-5100 Aachen

Institut für Anorganische Chemie und Technologie der Technischen Universität Gdansk^b, Ul. Majakowskiego 11, PL-80-952 Gdansk

Daimler-Benz AG, Forschung und Technik F1W/FS^c, Wilhelm-Runge-Straße 11, W-7900 Ulm

Eingegangen am 6. Dezember 1991

Key Words: Iminoboranes / Silylenes / Azasilaboriridin

Addition of Silylenes to Iminoboranes^[1]

Photolytically generated silylenes $SiMe_2$ and $SiMe_2$ are treated with iminoboranes $XB \equiv NtBu$ [X = tBu, $Me_3Si(tBu)N$, iPr_2N : 1a-c]. The products from $SiMe_2$ and 1a are the fourand six-membered rings $[-B(tBu) = N(tBu) - SiMe_2 - SiMe_2 -]$ (3a) and $[-B(tBu) = N(tBu) = N(tBu) - SiMe_2 - SiMe_2 -]$ (4a), depending on the conditions of the photolysis. $SiMe_2$ reacts with 1b to give the six-membered ring [-BX =

Im Zuge unserer vergleichenden Untersuchungen zur Reaktivität der Iminoborane $RB \equiv NR(1)^{[2]}$ und der mit ihnen isoelektronischen Alkine $RC \equiv CR(1')$ haben wir die Reaktionen von Silylenen mit Iminoboranen studiert. Die bei der Umsetzung von Alkinen mit Silylenen erhaltenen Produkte können Silacyclopropene 2', 1,2-Disilacyclobutene 3' und 1,4-Disilacyclohexadiene 4' sein. Wenn man speziell MeC \equiv CMe mit SiMe₂ umsetzt, ist es möglich, jedes dieser drei Produkte zu erhalten^[3]. Wie verhalten sich Iminoborane anstelle von Alkinen?

Präparative Befunde

Wir haben die Silylene SiMe₂ und SiMes₂ in Hexan aus dem Cyclohexasilan Si₆Me₁₂ bzw. dem Trisilan Me₃Si-SiMes₂-SiMe₃ mit UV-Strahlung der Wellenlänge 254 nm erzeugt^[4,5], und zwar in Gegenwart eines Überschusses von Iminoboran. Die bei -50°C einige Zeit haltbaren Iminoborane *i*PrB \equiv N*i*Pr und *i*BuB \equiv N*i*Bu mit einem noch nicht allzu großen Raumbedarf ihrer Liganden reagieren bei $N(tBu) - SiMe_2 - BX = N(tBu) - SiMe_2 -]$ (4b). From SiMes₂ and 1a, c the three-membered rings $[-BX = N(tBu) - SiMes_2 -]$ are formed (2a: space group *Pbca*; 2c: space group *P* $\overline{1}$): SiMes₂ reacts with 1b to yield the unexpected four-membered BNSiN ring [$= B(Mes) = N(tBu) - Si(Mes)(SiMe_3) - N(tBu) =]$ (5: space group *P* $\overline{1}$).

dieser Temperatur mit keinem der eingesetzten Silylene, vielmehr cyclotrimerisieren sie langsam zu den entsprechenden Borazinen. Dagegen beobachtet man eine Reaktion beider Silylene mit den bei Raumtemperatur einige Zeit haltbaren Iminoboranen $tBuB \equiv NtBu$ (1a) und $tBu(Me_3Si)N \cong B \cong NtBu$ (1b)^[2], deren Mehrfachbindungssystem sterisch ziemlich abgeschirmt ist, und selbst das wesentlich reaktivere Aminoiminoboran $iPr_2N \cong B \cong NtBu$ (1c)^[6] reagiert bei $-60 \,^{\circ}$ C mit SiMes₂. Das Aminoiminoboran C₉H₁₈N \cong $B \cong NtBu$ mit der besonders sperrigen 2,2,6,6-Tetramethylpiperidinogruppe geht dagegen keine Reaktion mit Silylenen ein^[7].

Erzeugt man SiMe₂ mit einem Quecksilberhochdruckstrahler bei -5° C in Gegenwart von 1a, so gewinnt man nach einer Reaktionszeit von 20 h das Vierringprodukt 3a mit 69% Ausbeute [Gl. (1)]. Wendet man dagegen für dieselben Ausgangsstoffe einen Quecksilberniederdruckstrahler bei 10°C über einen Zeitraum von 70 h an, so erhält man eine Mischung, in der sich das Cyclodimere von 1a, (tBuBNtBu)₂, NMR-spektroskopisch nachweisen und aus der sich das Produkt 3a durch einen GC/MS-Versuch abtrennen und nachweisen läßt. Durch Sublimation gewinnt man ca. 30% des nach Gl. (2) entstandenen Sechsrings 4a, dessen Konstitution sich aus den NMR-Spektren ableiten läßt, jedoch erhält man 4a wegen anhaftender Ausgangsverbindung Si₆Me₁₂ nicht analysenrein. - Setzt man das Aminoiminoboran 1b mit SiMe₂ um, indem man erst 100 h bei 0°C und dann 50 h bei 10°C mit der Niederdrucklampe bestrahlt, dann isoliert man neben dem bekannten Cyclodimeren von 1b^[2] u.a. den Sechsring 4b nach Gl. (3) mit 19% Ausbeute.

Chem. Ber. 1992, 125, 1073-1078 © VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1992 0009-2940/92/0505-1073 \$ 3.50+.25/0

Bestrahlt man Mes₂Si(SiMe₃)₂ mit der Quecksilberniederdrucklampe, so entstehen unter Abspaltung von Si₂Me₆ in Gegenwart von **1a** nach 60 h bei -60° C der Dreiring **2a** (41%), in Gegenwart von **1b** nach 130 h bei -40 bis 0°C der Vierring **5** (22%) und in Gegenwart von **1c** nach 90 h bei -60° C der Dreiring **2c** (37%) [Gl. (4), (5)]. Die Bildung der Produkte **2a,c** hatten wir erwartet, nicht aber die von **5**, über deren wohl mehrstufigen Mechanismus wir nichts wissen.

Bei allen Reaktionen nach Gl. (1)-(5) handelt es sich um oxidative Additionen an das Silylen, bei denen das Silicium nicht nur seine Koordinationszahl vo. 2 auf 4 erhöht, sondern auch seine Oxidationszahl, und zwar auf Kosten des Bors, das von +3 nach +1 reduziert wird.

Strukturen in Lösung

Die Konstitution der sechs neuen Produkte ergibt sich in Lösung aus den NMR-Spektren. Im Falle von **3a** sprechen vier ¹H-NMR-Singuletts im Verhältnis 3:3:2:2 für einen 1:2-Umsatz von 1a mit SiMe2 und beweisen ebenso wie das Auftreten von vier Quartetts im ¹³C-NMR-Spektrum die Nichtäquivalenz beider SiMe₂-Gruppen im Produkt. – Die Konstitution des Sechsrings 4a zeichnet sich durch die Nichtäquivalenz der je zwei Ringglieder BtBu, NtBu und SiMe₂ aus, wie sie in den ¹H-, ¹¹B- und ¹³C-NMR-Spektren zum Ausdruck kommt. Läge ein Isomeres vom Typ 4' vor, so wären entweder die Glieder aller drei Ringgliedpaare wie im Falle von 4b äquivalent, oder man hätte es im Falle eines 1,3-Diaza-2,5-disila-4,6-dibora-Isomeren mit einer Sorte von BtBu und NtBu, aber verschiedenen Gliedern SiMe₂ zu tun. – Im Falle von 4b folgt die Konstitution aus der eben genannten Äquivalenz der B-Atome, der NtBu- und der $SiMe_2$ -Gruppierungen. – Die Dreiringe **2a,c** sind dem Typ nach bekannt. Der Dreiring $[-B(NiPr_2) = N(tBu) - SiMe_2 -]$ (2d), der sich von 2c nur durch die Si-gebundenen Reste unterscheidet, ist aus der Dichlor-Verbindung $Cl - B(NiPr_2) =$ $N(tBu) - SiMe_2 - Cl$ durch Hetero-Wurtz-Synthese mit Na/K herstellbar^[8]. Die sich aus den ¹H- und ¹³C-NMR-Spektren ergebende Äquivalenz aller vier Me-Gruppen von iPr in 2c kann verstanden werden, wenn einerseits die Drehbarkeit der iPr₂N-Gruppe um die BN-Bindung wie bei 2d bei Raumtemperatur relativ zur NMR-Zeitskala schnell genug möglich ist – trotz der π -Anteile dieser Bindung keine Seltenheit bei Boranen vom Diaminoboran-Typ - und wenn andererseits die Molekül-Hauptebene wie bei 2d die Wirkung einer Spiegelebene entfaltet; für letzteres spricht die Äquivalenz aller vier o-Me- und der beiden p-Me-Gruppen von Mes. Die Struktur von 2c im Kristall zeichnet sich zwar durch nahezu koplanare Koordinationsebenen um die planar koordinierten Atome B und endo-N aus, jedoch führt keine Spiegelebene die beiden gegeneinander verdrillten Mesitylgruppen ineinander über. Um die Mesitylgruppen in Lösung bezüglich des NMR-Experiments äquivalent zu machen (und als Folge davon auch die *i*Pr-Reste je einer *i*Pr₂N-Gruppe), muß entweder ihre freie Drehbarkeit oder doch wenigstens ein Torsionsvorgang angenommen werden, der beide Gruppen periodisch, synchron und genügend schnell in zueinander enantiomere Gleichgewichtskonformationen bringt. Auch in 2a sind die beiden Mesitylgruppen wohl aus den gleichen Gründen wie bei 2c äquivalent. – Den äquivalenten tBu-Gruppen von 5 stehen nicht-äquivalente Mes-Gruppen gegenüber, in denen die o-Me-Reste jedoch äquivalent sind. Es müssen Drehvorgänge um die BC- bzw. die SiC-Bindung sein, die dem NMR-Beobachter eine Spiegelebene durch die beiden Si- und das B-Atom anzeigen.

Strukturen im Kristall

Die Strukturen von 2a,c und 5 im Kristall wurden röntgenographisch bestimmt. Die Ergebnisse finden sich in Tab. 1-3 und Abb. 1.

In den gespannten Dreiringen **2a, c** liegt der kleinste Ringwinkel mit 44 bzw. 45° am vierfach koordinierten Si-Atom; dies kann sowohl auf den Radienunterschied der Ringatome als auch auf die wegen ihres Doppelbindungscharakters ziemlich kurze BN-Bindung zurückgeführt werden. Das B-Atom ist jeweils planar und das Ring-N-Atom (Winkelsum-

Abb. 1. Molekülstruktur von **2a,c, 5** (Ellipsoide mit 30% der Aufenthaltswahrscheinlichkeit)

Tab. 1. Ausgewählte Bindungsabstände [pm] und -winkel [°] von 2a,c,5 und 5'

	2a	2c		5	5'
B-N1	139.4(6)	142.2(3)	B-N1	145.0(5)	143.0(6)
B-Si	191.3(6)	192.6(2)	B-N2	143.6(6)	145.1(5)
Si-N1	176.1(4)	174.7(2)	Sil-N1	174.5(4)	175.5(3)
N1-C1	150.8(6)	148.1(3)	Sil-N2	176.8(3)	175.4(4)
B-C2	156.4(7)	/	B-C3	159.3(7)	158,9(7)
B-N2	1	140.2(2)	N1-C1	147.5(5)	147.8(5)
si-c3	188.2(4)	190.6(2)	N2-C2	147.9(5)	148.1(5)
Si-C4	187.0(4)	188.3(2)	Sil-C4	181.3(4)	192.7(5)
N1-B-Si	62.0(3)	60.7(1)	Sil-Si2	239.4(2)	240.0(2)
B-N1-Si	73.6(3)	74.1(1)	N1-B-N2	101.6(4)	101.1(4)
B-Si-N1	44.3(2)	45.2(1)	B-N1-Si	89.8(3)	90.3(2)
N1-B-C2	138.9(5)	/	N1-Si-N2	79.1(1)	78.7(1)
Si-B-C2	158.4(4)	1	B-N2-Sil	89.3(2)	89.7(3)
N1-B-N2	/	139.3(2)	N1-B-C3	128.2(4)	130.4(3)
Si-B-N2	1	160.0(2)	N2-B-C3	130.2(3)	128.5(4)
B-N1-C1	140.3(4)	140.2(2)	B-N1-C1	134.2(4)	134.6(4)
Si-N1-C1	144.1(3)	142.9(1)	Si-N1-C1	135.9(3)	135.1(3)
B-Si-C3	119.5(2)	127.1(1)	B-N2-C2	133.7(3)	133.2(4)
B-Si-C4	125.8(2)	122.0(1)	Si1-N2-C2	136.5(3)	136.7(3)
C3-Si-C4	112.4(2)	109.29(9)	C4-Si1-Si2	114.5(5)	114.6(1)

men 358.0 bzw. 357.2°) nahezu planar koordiniert. Die Aminogruppe von **2c** mit ihrem planar koordinierten N-Atom liegt nahezu coplanar zur Ringebene und bietet so die Voraussetzung für eine starke exocyclische BN-Doppelbindung (140.2 pm) neben einer etwas längeren endocyclischen (142.2 pm). Diese BN-Bindung ist bei **2a** mit 139.4 pm deutlich kürzer. Die beiden Mesitylgruppen entgehen in einer propellerartigen Staffelung ihrer Ringebenen am besten der Überlappung ihrer *ortho*-Methylgruppen untereinander und mit den benachbarten Gruppen N*i*Pr₂ und *t*Bu; dabei bilden die Normalen von Mes3 (C3-C38) und Mes4 (C4-C48) mit der Normalen der Dreiringebene Winkel von 105.5 bzw. 130.3° (**2a**) und von 77.0 bzw. 60.8° (**2c**).

Im kristallisierten 5 findet man zwei konformationsisomere Moleküle mit zwar ähnlichen, aber doch unterschiedlichen Abmessungen, 5 und 5'; die Unterschiede bleiben für eine qualitative Strukturdiskussion ohne Belang. Der nahezu planare Vierring ist an der N1–N2-Achse beider Konformerer mit einem Interplanarwinkel von nur 5.7° gefaltet. Bei planar koordinierten Ringatomen B, N1 und N2 liegen die BN-Abstände mit 143–145 pm in einem Bereich, der für das B–N–B–N-Vierringsystem der Diazadiboretidine typisch ist^[2]. Die Ebene der *B*-gebundenen Mesitylgruppe bildet mit der Ebene des Ringfragments N1–B–N2 fast einen rechten Winkel (93.6 bzw. 92.2°); etwas mehr verdrillt ist die zweite Mesitylgruppe bezüglich der Ebene N1–Si–N2 (111.5 bzw. 111.8°).

Experimenteller Teil

NMR: Bruker WP 80 SY (¹H), Jeol JMN-PS-100 (¹¹B), Bruker WH 270 (¹³C), in CDCl₃. – GC/MS: Hewlett-Packard 5995 (Säule 5 mm × 15 m, Methylsilicon als Füllung; 70 eV). – Photolysen mit Quecksilberhoch- oder -niederdruckstrahler TQ150 bzw. TNN 15 der Fa. Hanau in Gegenwart von jeweils 25 mg Benzophenon. Die Photolysen versagen, wenn die eingesetzten Iminoborane nicht frei von Me₃SiCl (1a) bzw. Me₃SiF (1b,c) sind. – C,H,N: Carlo-Erba-Elemental-Analyser 1106. – Alle Substanzen müssen in Wasser- und Sauerstoff-freien Medien gehandhabt werden.

1,4-Di-tert-butyl-2,2,3,3-tetramethyl-1,2,3,4-azadisilaboretidin (**3a**): 6.1 g (17.5 mmol) cyclo-Si₆Me₁₂ und 7.3 g (52.5 mmol) 1a^[9] werden in 60 ml Hexan bei -5 °C 20 h mit dem Hochdruckstrahler photolysiert. Nach Entfernen aller flüchtigen Anteile i. Vak. sublimiert man bei 40 °C/0.005 Torr das Produkt **3a**, von dem man nach dreimaligem Kristallisieren aus Pentan bei -38 °C 3.1 g (69%, bezogen auf die Abspaltung von 1 mol SiMe₂ aus 1 mol Si₆Me₁₂) erhält, Schmp. 51 °C. - ¹H-NMR (C₆D₆): δ = 0.33, 0.44 (2 s; je 6H, SiMe₂), 1.19, 1.25 (2 s; je 9H, tBu). - ¹¹B-NMR (C₆D₆): δ = 59.4. - ¹³C-NMR: δ = -5.7, 4.1 (2 q; SiMe₂), 29.0 (breit; BC), 31.0, 33.2 (2 q; Me von tBu), 55.1 (s; NC). - MS: m/z (%) = 255 (85) [M⁺], 240 (36) [M - Me], 198 (100) [M - C₄H₈], 124 (36) [M - Si₂Me₄ - Me] u.a.

1,2,3,6-Tetra-tert-butyl-4,4,5,5-tetramethyl-1,3-diaza-4,5-disila-2,6-diboracyclohexan (**4a**): 2.5 g (7.2 mmol) cyclo-Si₆Me₁₂ und 4.9 g (35 mmol) **1a** werden in 70 ml Hexan bei 10°C 70 h mit dem Niederdruckstrahler behandelt. In der Lösung läßt sich mittels GC/ MS der Vierring **3a** nachweisen. Nach Entfernen aller bei 80°C/ 0.005 Torr flüchtigen Stoffe erhält man nach dreimaliger Sublimation bei 90°C/0.005 Torr das Produkt **4a** als farblosen, wachsartigen Feststoff, dem laut NMR- und Massenspektrum noch Reste von Si₆Me₁₂ anhaften; Ausb. 0.90 g (ca. 30%, Bezug wie **3a**). – ¹H-NMR: δ = 0.18, 0.25 (2 s; je 6H, SiMe₂), 1.05, 1.34, 1.41 (3 s im Verhältnis 2:1:1; zusammen 36H, tBu). – ¹¹B-NMR: δ = 45.5, 55.5 (1:1). – ¹³C-NMR: δ = 1.5, 5.2 (2 q; SiMe₂), 31.1, 32.8, 33.7, 34.4 (4 q; Me von tBu), 54.7, 56.8 (2 s; NC); die breiten BC-Signale werden nicht gefunden.

1,4-Di-tert-butyl-3,6-bis[tert-butyl(trimethylsilyl)amino]-2,2,5,5tetramethyl-1,4-diaza-2,5-disila-3,6-diboracyclohexan (4b): 2.3 g (6.6 mmol) $cyclo-Si_6Me_{12}$ und 6.0 g (26 mmol) 1 b^[10] werden in 70 ml Hexan zuerst 100 h bei 0°C, dann 50 h bei 10°C mit der Niederdrucklampe photolysiert. In der Lösung finden sich die bekannten NMR-Signale des Cyclodimeren [tBu(Me₃Si)NBNtBu]^[10]. Die bis zu 90°/0.005 Torr flüchtigen Reaktionsanteile werden abkondensiert, der Rückstand wird in Chloroform aufgenommen. Nach Filtrieren, Einengen und dreimaligem Kristallisieren des festen Produkts bei -30° C aus Hexan erhält man 0.70 g (19%, Bezug wie **3a) 4b**, Zers.-P. 208 °C. - ¹H-NMR: $\delta = 0.12$ (s; 12H, SiMe₂), 0.25 (s; 18 H, SiMe₃), 1.32, 1.42 (2 s; 36 H, tBu). $-{}^{11}$ B-NMR: $\delta = 36.7$. $- {}^{13}$ C-NMR: $\delta = -6.1$ (q; SiMe₂), 4.4, 4.7 (2 q im Verhältnis 2:3; SiMe3; die Aufspaltung läßt sich im Falle einer Orthogonalstellung der Aminogruppen zur Ringebene auf eine syn/anti-Isomerie oder im Falle einer entsprechenden coplanaren Stellung der Aminogruppen und eingeschränkter Rotation um die BN-Bindung auf eine cis/trans-Isomerie zurückführen), 33.16, 33.23 (2 q; Me von tBu), 49.3, 53.7 (2 s; NC).

C24H66B2N4Si4 (568.8	Ber.	C 54.90	H 11.70	Ν	9.85
	Gef.	C 55.63	H 11.86	Ν	10.43

1,3-Di-tert-butyl-2,2-dimesitylazasilaboriridin (2a): 4.0 g (9.7 mmol) Mes₂Si(SiMe₃)₂ und 2.4 g (17.3 mmol) 1a werden in 40 ml Hexan 60 h bei -60° C mit der Quecksilberniederdrucklampe photolysiert, wobei die zunächst farblose Lösung sofort gelb wird. Nach Entfernen aller flüchtigen Verbindungen i.Vak. erhält man nach dreimaligem Umkristallisieren aus Hexan 1.60 g (41%) 2a, Schmp. 175°C. - ¹H-NMR: $\delta = 1.19$, 1.29 (2 s; je 9H, tBu), 2.24 (s; 6H, p-Me), 2.33 (s; 12H, o-Me), 6.75 (s; 4H, m-H). - ¹¹B-NMR: $\delta = 47.6. -$ ¹³C-NMR: $\delta = 21.1$ (q; p-Me), 23.9 (q; o-Me), 30.1, 32.4 (2 q; Me von tBu), 54.9 (s; NC), 128.3 (d; m-C), 135.2, 137.9, 142.9 (3 s; Ring-C von Mes).

1-tert-Butyl-3-(diisopropylamino)-2,2-dimesitylazasilaboriridin (2c): 1.0 g (2.4 mmol) Mes₂Si(SiMe₃)₂ und eine Menge 1c, die aus 3.0 g (10.6 mmol) der Vorstufe F(*i*Pr₂N)B[N(SiMe₃)*t*Bu] durch Gasphasenthermolyse und vollständige Abtrennung des abgespaltenen FSiMe₃ gewonnen wird¹⁶, vereinigt man bei -60° C in 40 ml Hexan und photolysiert 90 h. Die Reaktionslösung enthält laut NMR-Spektren eine 1:1-Mischung des Cyclodimeren von 1c, [(*i*-Pr₂N)BN*t*Bu]₂^[6], und 2c. Flüchtige Reaktionsanteile entfernt man zunächst i.Vak.; das Cyclodimere von 1c läßt sich bei 60°C/0.005 Torr absublimieren. Umkristallisieren aus Hexan ergibt 0.40 g (37%) farbloses 2c, Schmp. 157°C. – ¹H-NMR: $\delta = 1.13$ (d, J = 6.7 Hz; 12H, Me von *i*Pr), 1.21 (s; 9H, *t*Bu), 2.21 (s; 6H, *p*-Me), 2.31 (s; 12H, *o*-Me), 3.68 (sept; J = 6.7 Hz; 2H, NCH), 6.71 (s; 4H, *m*-H). – ¹¹B-NMR: $\delta = 30.6.$ – ¹³C-NMR: $\delta = 14.0$ (q; Me von *i*Pr), 21.0 (q; *p*-Me), 24.0 (q; *o*-Me), 32.2 (q; Me von *t*Bu), 49 (breit; CH von *i*Pr), 52.2 (s; C1 von *t*Bu), 128.2 (d; *m*-C), 136.3, 137.4, 142.7 (3 s; Ring-C von Mes).

1,3-Di-tert-butyl-2,4-dimesityl-2-(trimethylsilyl)-1,3,2,4-diazasilaboretidin (5): Zunächst werden 2.0 g (4.8 mmol) Mes₂Si(SiMe₃)₂ in Gegenwart von 3.9 g (17.2 mmol) **1b** in 70 ml Hexan bei zunächst -40°C, zuletzt bei -20°C 70 h photolysiert. Nach Zugabe von weiteren 1.0 g (2.4 mmol) des Trisilans wird die Photolyse für weitere 60 h bei zunächst -20°C, zuletzt bei 0°C fortgesetzt. Flüchtige Bestandteile werden i. Vak. abkondensiert, zuletzt bei 120°C/0.001 Torr das Cyclodimer von **1b**. Aus Hexan kristallisieren 0.80 g (23%) farbloses **5**, Schmp. 185°C. - ¹H-NMR (-30°C): δ = 0.45 (s; 9 H, SiMe₃), 1.07 (s; 18 H, tBu), 2.31, 2.47 (2 s; je 6 H, o-Me), 2.67, 2.99 (2 s; je 3 H, p-Me), 6.86 (s; 4 H, m-H). - ¹¹B-NMR: δ = 38.0. - ¹³C-NMR: δ = 2.8 (q; SiMe₃), 20.9, 21.1 (2 q; p-Me), 24.0, 25.1 (2 q; o-Me), 32.9 (q; Me von tBu), 49.9 (s; NC), 127.2, 127.8, 129.3 (3 d; m-C), 133.4, 136.6, 139.0, 135.4, 139.9 (5 s; *i*- bzw. o- bzw. p-C).

Röntgenstrukturanalysen von **2a,c** und **5**: Daten und Ergebnisse enthalten die Tabellen 1-3.

Raumgruppe (Nr.)Pbca (61) $P\overline{1}$ (2) $P\overline{1}$ (2) $a [pm]$ 994.9(6)1044.0(2)1527.4(2) $b [pm]$ 1681.1(7)1636.3(4)1753.7(3) $c [pm]$ 3128(2)879.9(2)1232.6(2) $\alpha [^{\circ}]$ 9096.06(2)108.15(1) $\beta [^{\circ}]$ 90110.356(9)94.36(1)		2a ^[b]	2c ^[c]	5 ^[c]	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Raumgruppe (Nr.) a [pm] b [pm] c [pm] c [pm] α [°] β [°] γ [°] V [nm ⁻³] Z Dichte ϱ_{ber} . [g/cm ³] Kristallgröße [mm ³] Meßtemperatur [K] Absorptions-Koeff. μ [cm ⁻¹] Unabhäng. Reflexe [2 Θ_{max}] Beob. Reflexe N[$F_o \ge N\sigma(F_o)$] g in $w^{-1} = \sigma(F_o)^2 + gF_o^2$ R-Wert R_w -Wert R_w -Wert	Pbca (61) 994.9(6) 1681.1(7) 3128(2) 90 90 90 90 90 90 90 90 90 91 92 93 1.0 3626(46°) 1987(2) $8 \cdot 10^{-4}$ 0.078 0.077	$\begin{array}{c} P\overline{1} (2) \\ 1044.0(2) \\ 1636.3(4) \\ 879.9(2) \\ 96.06(2) \\ 110.356(9) \\ 94.57(2) \\ 1.390(2) \\ 2 \\ 1.072 \\ 0.3 \cdot 0.3 \cdot 0.7 \\ 295 \\ 1.3 \\ 4907(50^{\circ}) \\ 4275(3) \\ 7 \cdot 10^{-4} \\ 0.0456 \\ 0.0437 \\ \end{array}$	$\begin{array}{c} P\overline{1} (2) \\ 1527.4(2) \\ 1753.7(3) \\ 1232.6(2) \\ 108.15(1) \\ 94.36(1) \\ 93.708(9) \\ 3.115(2) \\ 4 \\ 1.051 \\ 0.7 \cdot 0.4 \cdot 0.2 \\ 296 \\ 1.0 \\ 7409(45^{\circ}) \\ 5978(3) \\ 3.4 \cdot 10^{-4} \\ 0.0636 \\ 0.0498 \\ 2029 \end{array}$	

Tab. 2. Daten zu den Röntgenstrukturanalysen von 2a,c und 5^[a]

^[a] Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-56148, der Autoren und des Zeitschriftenzitats angefordert werden. – ^[b] Diffraktometer Enraf-Nonius CAD4, Rechner VAX-Station 3100, Programm SDP. – ^[c] Diffraktometer Stoe-Stadi 4, Rechner Comparex 778, Programm SHELX 76 und SHELXS 86.

Tab. 3. Atomkoordinaten (× 10⁴) und äquivalente isotrope thermische Parameter U (pm² × 10⁻¹) (berechnet als ein Drittel der Spur des orthogonalen U_{ij} -Tensors) von **2a**, c, 5 und 5'

	x	y	2	U		x	Y	Z	U	
					· 					
2 a			_		5				•	
B	6687(7)	13(4)	1076(2)	55(1)	В	197(3)	1999(3)	2585(5)	36(2)	
S1	8456(2)	308.6(9)	1255.6(5)	52.2(4)	N1	481(2)	2776(2)	3430(3)	33(1)	
N C1	6062(6)	1461(4)	1307(1) 1417(2)	03(1) 78(3)	N2 Sil	389(2)	2141(2)	2350(1)	34(1)	
c2	5535(7)	-524(3)	895(2)	83(3)	511 Si2	2434(1)	3172(1)	2330(1)	$\frac{32(1)}{48(1)}$	
c3	9328(5)	-294(3)	1680(2)	53(1)	C1	419(3)	3130(3)	4671(4)	51(2)	
C4	9644(5)	962(3)	953(2)	46(1)	C11	741(5)	3996(3)	5058(5)	131(4)	
C11	6986(7)	2037(4)	1657(3)	132(3)	C12	1035(6)	2731(5)	5313(5)	176(6)	
C12	5648(8)	1864(4)	1000(2)	121(3)	C13	-453(5)	2978(7)	4956(7)	246(6)	
C13	4832(7)	1254(5)	1682(2)	120(3)	C2	319(3)	1627(3)	324(4)	48(2)	
C21	6133(8)	-1129(5)	584(3)	164(4)	C21	899(3)	932(3)	185(4)	75(3)	
C22	4408(8)	-84(5)	649(2)	150(4)	C22	-630(3)	1253(3)	-79(4)	72(3)	
023	4914(8)	-9/2(3)	1541(2)	144(3) 62(1)	023	5/9(5) 2765(A)	2139(3)	-398(4)	100(4)	
C32	10769(6)	-842(4)	1070(2)	81(3)	C24 C25	2/03(4)	2602(2)	2715(3)	93(3)	
C33	10972(6)	-1329(4)	1823(2)	79(3)	C25	2846(4)	2145(3)	1904(6)	95(3)	
C34	10613(7)	-1353(4)	2248(2)	85(3)	C3	-191(3)	1197(2)	2797(3)	38(2)	
C35	11303(7)	-1947(4)	2553(2)	125(3)	C31	-1100(3)	996(3)	2761(4)	50(2)	
C36	9632(6)	-853(4)	2389(2)	84(3)	C32	-1785(3)	1508(3)	2467(5)	72(3)	
C37	8977(6)	-317(4)	2118(2)	67(1)	C33	-1405(3)	307(3)	3004(4)	57(2)	
C38	7915(6)	218(4)	2301(2)	99(3)	C34	-837(4)	-194(3)	3287(4)	59(2)	
C41	9579(5)	1027(3)	504(2)	52(1)	C35	-1172(4)	-932(3)	3583(5)	91(3)	
C42	8552(5)	565(3)	244(2)	70(1)	C36	51(4)	4(3)	3328(4)	55(2)	
C43	104/6(6)	1059(3)	284(2)	63(1)	C37	382(3)	685(3)	30/4(4)	45(2)	
C44	12409(7)	2480(4)	493(2)	09(3)	C30	1309(3)	4022(2)	2115(2)	24(2)	
C45	11510(6)	1894(3)	933(2)	63(1)	C4 C41	822(3)	4022(2)	2113(3) 2350(4)	34(2)	
C47	10643(5)	1415(3)	1162(2)	55(1)	C41	1693(3)	5015(3)	3079(5)	74(3)	
C48	10798(6)	1423(4)	1647(2)	81(3)	C43	468(3)	5384(3)	1999(4)	53(2)	
					C44	-363(4)	5295(3)	1443(4)	55(2)	
					C45	-727(4)	5950(3)	1024(5)	84(3)	
					C46	-861(3)	4582(3)	1299(4)	55(2)	
~					C47	-533(3)	3966(3)	1635(4)	44(2)	
2c	7426/21	2600(2)	2162(2)	20 2/01	C48	-1179(3)	3245(3)	1520(5)	78(3)	
B NI1	7420(2) 6712(2)	2000(2)	1669(2)	39.2(9)	В' N1'	3003(3)	7017(3)	2000(3)	39(2)	
N2	8780(2)	2859(1)	4243(2)	43.3(7)	N2'	5063(2)	7818(2)	3506(3)	38(1)	
Si	5447.6(6)	2515.0(4)	2224.6(7)	38.2(2)	Sil'	4271(1)	8046(1)	2574(1)	38(1)	
c1	6929(2)	1361(2)	620(3)	44.1(9)	Si2'	2878(1)	8100(1)	3363(1)	54(1)	
c11	7514(3)	699(2)	1684(3)	61.8(11)	C1'	4184(3)	6530(3)	584(4)	55(2)	
C12	7901(2)	1648(2)	-236(3)	61.3(11)	C11'	3640(5)	6959(4)	-50(5)	132(4)	
C13	5539(2)	981(2)	-672(3)	54.4(10)	C12'	3587(5)	5826(4)	666(6)	143(5)	
C21	9129(2)	3534(2)	5636(3)	55.2(10)	C13'	4943(4)	6197(5)	-26(5)	157(5)	
C22	8813(4)	3248(2)	7068(3)	102.8(17)	C2'	5482(3)	8206(3)	4693(4)	50(2)	
C23	8453(3)	4295(2)	5136(4)	78.0(14)	C21*	5283(4)	//5/(4)	5500(4)	86(3)	
C24	10681(3)	3194(2)	3259(4)	91.8(17)	C22	5238(5)	9055(3)	4752(5)	$\frac{97(3)}{11A(A)}$	
c26	10970(3)	2243(2)	5386(4)	96.4(15)	C24'	2704(4)	9145(3)	4284(5)	105(4)	
c3	4154(2)	1730(2)	2554(2)	38.8(8)	C25'	1865(3)	7696(4)	2304(5)	94(3)	
C31	4534(2)	1346(2)	3985(2)	42.3(8)	C26'	2826(4)	7448(4)	4305(6)	101(4)	
C32	5959(2)	1530(2)	5274(3)	62.5(11)	C3'	5557(3)	6279(3)	2833(4)	42(2)	
C33	3593(2)	785(2)	4261(3)	48.0(9)	C31'	6430(3)	6169(3)	2567(4)	52(2)	
C34	2261(2)	581(2)	3177(3)	47.3(9)	C32'	6923(3)	6727(3)	2058(5)	75(3)	
C35	1245(2)	-13(2)	3518(3)	66.3(12)	C33'	6859(3)	5546(3)	2765(4)	61(2)	
027	1888(2)	939(2)	1/34(3)	49.3(9)	C34*	6022(4)	5003(3)	3216(4)	62(2)	
C37	2757(2)	1930(2)	-194(3)	65 5(11)	C35	5602(4)	4334(3)	3456(1)	62(2)	
C4	4536(2)	3384(2)	1269(3)	40.9(8)	C37'	5144(3)	5718(3)	3279(4)	50(2)	
C41	4300(2)	3578(2)	-323(3)	46.9(9)	C38'	4210(3)	5782(3)	3578(5)	75(3)	
C4	4843(3)	3108(2)	-1485(3)	62.6(12)	C4'	4580(3)	8924(3)	2005(4)	42(2)	
C43	3532(2)	4215(2)	-866(3)	57.5(11)	C41'	3957(3)	9391(3)	1705(4)	48(2)	
C44	2974(3)	4678(2)	88(3)	60.1(11)	C42'	2983(3)	9127(3)	1467(5)	76(3)	
C45	2104(3)	5342(2)	-565(4)	89.9(16)	C43	4225(4)	10109(3)	1499(4)	58(2)	
C46	3256(2)	4511(2)	1673(3)	57.4(11)	C44'	5088(4)	10382(3)	1551(4)	58(2)	
C4/	4026(2)	3088(2)	22/4(3)	40.4(9)	C45	5360(4)	0880(3) TTT\?(?)	1346(5)	80(3)	
C40	-300(3)	5770(2)	-1040(3)	JU:4(11)	C40 C47	5473(3)	9168/31	1953(4)	54(2)	
					C48'	6208(3)	8637(4)	2007(6)	92(4)	

CAS-Registry-Nummern

1a: 89786-99-2 / 1b: 93109-75-2 / 1c: 118331-75-2 / 2a: 139494-20-5 / 2c: 139523-76-5 / 3a: 139494-22-7 / 4a: 139523-77-6 / 4b: 139523-78-7 / 5: 139494-21-6 / SiMe_2: 6376-86-9 / SiMes_2: 79184-71-7 / cyclo-Si_6Me_{12}: 4098-30-0 / Mes_2Si(SiMe_3)_2: 79184-72-8

^[1] Herrn Professor Welf Bronger zum 60. Geburtstag gewidmet.
^[2] P. Paetzold, Adv. Inorg. Chem. 1987, 31, 123-170.
^[3] Yi-Noo Tang in Reactive Intermediates (Hrsg.: R. A. Abramovitch), Plenum Press, New York, 1982, Bd. 2, S. 356-359.
^[4] M. Ishikawa, M. Kumuda, J. Organomet. Chem. 1972, 42, 325-332.

- ^[5] M. J. Fink, M. J. Michalczyk, K. J. Haller, R. West, J. Michl, Organometallics 1984, 3, 793-800.
 ^[6] K.-H. van Bonn, T. von Benningsen-Mackiewicz, J. Kiesgen, C. von Plotho, P. Paetzold, Z. Naturforsch., Teil B, 1988, 43, 43, 45
- ⁽⁷⁾ U. Wietelmann, Dissertation, Universität München, 1986.
 ⁽⁸⁾ K.-H. van Bonn, P. Schreyer, P. Paetzold, R. Boese, *Chem. Ber.* 1988, *121*, 1045-1057.
- ^[9] P. Paetzold, C. von Plotho, G. Schmid, R. Boese, B. Schrader, D. Bougeard, U. Pfeiffer, R. Gleiter, W. Schäfer, *Chem. Ber.* **1984**, 117, 1089-1102.
- ^[10] P. Paetzold, E. Schröder, G. Schmid, R. Boese, Chem. Ber. 1985, *118*, 3205 – 3216.

[471/91]